Search Results/Filters    

Filters

Year

Banks



Expert Group











Full-Text


Author(s): 

BEYGY H. | MEYBODI M.R.

Issue Info: 
  • Year: 

    2003
  • Volume: 

    1
  • Issue: 

    4 (b)
  • Pages: 

    39-51
Measures: 
  • Citations: 

    0
  • Views: 

    898
  • Downloads: 

    0
Abstract: 

In this paper, we introduce open cellular Learning automata and then study its convergence behavior. It is shown that for a class of rules called commutative rules, the open cellular Learning automata in stationary external environments converges to a stable and compatible configuration. The numerical results also confirm the theory.  

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 898

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2004
  • Volume: 

    9
Measures: 
  • Views: 

    200
  • Downloads: 

    287
Keywords: 
Abstract: 

IN THIS PAPER, WE FIRST GIVE A FORMAL DESCRIPTION FOR CELLULAR Learning automata THEN STUDY ITS CONVERGENCE BEHAVIOR. IT IS SHOWN THAT FOR PERMUTABLE RULES, THE CELLULAR Learning automata CONVERGE TO A STABLE AND COMPATIBLE CONFIGURATION. THE NUMERICAL RESULTS ALSO CONFIRM OUR THEORETICAL INVESTIGATIONS.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 200

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 287
Issue Info: 
  • Year: 

    2025
  • Volume: 

    13
  • Issue: 

    1
  • Pages: 

    65-80
Measures: 
  • Citations: 

    0
  • Views: 

    9
  • Downloads: 

    0
Abstract: 

Background and Objectives: Sonar data processing is used to identify and track targets whose echoes are unsteady. So that they aren’t trusty identified in typical tracking methods. Recently, RLA have effectively cured the accuracy of undersea objective detection compared to conventional sonar objective cognition procedures, which have robustness and low accuracy. Methods: In this research, a combination of classifiers has been used to improve the accuracy of sonar data classification in complex problems such as identifying marine targets. These classifiers each form their pattern on the data and store a model. Finally, a weighted vote is performed by the LA algorithm among these classifiers, and the classifier that gets the most votes is the classifier that has had the greatest impact on improving performance parameters.Results: The results of SVM, RF, DT, XGboost, ensemble method, R-EFMD, T-EFMD, R-LFMD, T-LFMD, ANN, CNN, TIFR-DCNN+SA, and joint models have been compared with the proposed model. Considering that the objectives and databases are different, we benchmarked the average detection rate. In this comparison, Precision, Recall, F1_Score, and Accuracy parameters have been considered and investigated in order to show the superior performance of the proposed method with other methods.Conclusion: The results obtained with the analytical parameters of Precision, Recall, F1_Score, and Accuracy compared to the latest similar research have been examined and compared, and the values are 87.71%, 88.53%, 87.8%, and 87.4% respectively for each of These parameters are obtained in the proposed method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 9

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

HORN G. | OOMMEN B.J.

Issue Info: 
  • Year: 

    2002
  • Volume: 

    -
  • Issue: 

    -
  • Pages: 

    0-0
Measures: 
  • Citations: 

    1
  • Views: 

    162
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 162

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MEYBODI M.R. target="_blank">MOLLAKHALILI MEYBODI M.R. | MEYBODI M.R.

Journal: 

APPLIED INTELLIGENCE

Issue Info: 
  • Year: 

    2014
  • Volume: 

    41
  • Issue: 

    2
  • Pages: 

    923-940
Measures: 
  • Citations: 

    1
  • Views: 

    109
  • Downloads: 

    0
Keywords: 
Abstract: 

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 109

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    0
  • Volume: 

    3
  • Issue: 

    (ویژه نامه 10)
  • Pages: 

    57-58
Measures: 
  • Citations: 

    0
  • Views: 

    693
  • Downloads: 

    0
Abstract: 

مقدمه: نظر به اینکه سیستم آموزشی فعلی جهت دانشجویان گروه پزشکی به نحوی است که دانشجویان بیشتر زمان آموزش خود را در چارچوب برنامه های رسمی محدود به شرایط تصنعی و کلاسیک طی می کنند، در نتیجه میزان رضایت از کیفیت آموزش به روش موجود و کاربرد آموخته ها در شرایط واقعی نیاز به بررسی و حتی تغییر در رویکرد حاضر دارد.مرور مطالعات: با مطالعه تاریخچه خدمات و آموزش جامعه نگر و جامعه محور در می یابیم که حدود یک قرن پیش به صورت Service Learning ارایه خدمات و آموزش به فراگیران همزمان در بستر جامعه انجام می پذیرفت. از اوایل 1900 تاکنون، آموزش دهندگان متوجه اهمیت ارتباط خدمات با اهداف آموزش شده اند و درطی قرن از 1960 تا 1970 در نتیجه S.L گذشته این مفهوم در آموزش جایگاه خود را حفظ کرده است. اغلب برنامه های فعالیت دانشجویان در جامعه در راستای اهداف آموزش توسعه یافت. این S.L اساس اعتقاد و مشابه نگرش ساختار گراهاست که معتقدند تولید و ساخت دانش در افراد از دانش و تجربیات پایه و مقدماتی شروع می شود بطرف فرایند یادگیری، تفسیر و بحث پیرامون اطلاعات جدید در زمینه اجتماع و محیط فردی پیش می رود. در حقیقت مفهوم یادگیری دو طرفه اساس و وجه تمایز تجربه ناشی از آموزش به روش دانشجویان به اهداف آموزشی دروس خود با مشارکت در برنامه های ارایه خدمت در شرایط واقعی دست می یابند و جامعه نیز مستقیما از آن بهره مند می شود. در این روش هم فراگیر و هم جامعه بهره مند می شوند. و فراگیران فعالانه به تولید محصول و خدمت مرتبط با اهداف آموزش می پردازند. با توسعه نگرشها، باورها و رفتارها در ارتباط با جامعه، شهروندانی مطلع و نیروی کار تولیدی تربیت می کنند. در این روش اساس کار دریافت باز خورد از جامعه و مدرسان است که به فراگیران فرصت می دهد دانش جدید خود را با دیگران مطرح کند و آموخته های خود را برای دیگران معنی دار کنند.بحث: در آموزش سنتی مردم بر خدماتی که دریافت میکنند، هیچ گونه کنترلی ندارند، فراگیران نیز قدرت مداخله و کاربرد آموخته های خود را ندارند ولی در این آموزش، تمام ابعاد نیازهای مردم دیده می شود و فراگیران با مشارکت مردم روی نیازها کار می کنند، مردم بر ارایه خدمات نظارت دراند. انریش می گوید: یادگیری فراگیران از طریق خواندن کتابهای قطور در اطاقهای در بسته ایجاد نمی شود، بلکه باید درهای پنجره ها را باز کرد و به دنبال تجربه بود. در نهایت به کمک SL فرصتی برای آزمون مسوولیت پذیری، تبدیل شدن به یک شهروند خوب را برای فراگیران در حین دستیابی به اهداف آموزش و ارایه خدمت به مردم ایجاد نماییم.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 693

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2009
  • Volume: 

    1
  • Issue: 

    4
  • Pages: 

    79-92
Measures: 
  • Citations: 

    0
  • Views: 

    308
  • Downloads: 

    0
Abstract: 

Active database systems (ADBS) can react to the occurrence of predefined events automatically by definition a collection of active rules. One of the most important modules of ADBS is the rule scheduler, which has considerable impact on performance and efficiency of ADBS. The job of rule scheduler is the selection of a rule for execution from the set of ready for execution rules. In this paper, we propose a new approach based on Learning automata to improve the rule scheduling performance in terms of average response time, response time variance, and throughput. Learning automata have been used to obtain better estimations for rule execution probabilities. The results of experimentations show that the performance of the proposed method outperforms the most effective existing rule scheduling method.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 308

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

BEYGY H. | MEYBODI M.R.

Journal: 

Scientia Iranica

Issue Info: 
  • Year: 

    2005
  • Volume: 

    12
  • Issue: 

    1
  • Pages: 

    14-25
Measures: 
  • Citations: 

    0
  • Views: 

    366
  • Downloads: 

    144
Keywords: 
Abstract: 

In this paper, an adaptive random search method, based on continuous action-set Learning automata, is studied for solving stochastic optimization problems in which only the noise-corrupted value of a function at any chosen point in the parameter space is available. First, a new continuous action-set Learning automaton is introduced and its convergence properties are studied. Then, applications of this new continuous action-set Learning automata to the minimization of a penalized Shubert function and pattern classification are presented.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 366

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 144 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2014
  • Volume: 

    4
Measures: 
  • Views: 

    132
  • Downloads: 

    58
Abstract: 

IN THIS PAPER, A NEW ALGORITHM WHICH IS THE RESULT OF THE COMBINATION OF CELLULAR Learning automata AND FROG LEAP ALGORITHM (SFLA) IS PROPOSED FOR OPTIMIZATION IN CONTINUOUS, STATIC ENVIRONMENTS.AT THE PROPOSED ALGORITHM, EACH MEMEPLEX OF FROGS IS PLACED IN A CELL OF CELLULAR Learning automata. Learning automata IN EACH CELL ACTS AS THE BRAIN OF MEMEPLEX, AND WILL DETERMINE THE STRATEGY OF MOTION AND SEARCH.THE PROPOSED ALGORITHM ALONG WITH THE STANDARD SFLA AND TWO GLOBAL AND LOCAL VERSIONS OF PARTICLE SWARM OPTIMIZATION ALGORITHM HAVE BEEN TESTED IN 30-DIMENSIONAL SPACE ON FIVE STANDARD MERIT FUNCTIONS. EXPERIMENTAL RESULTS SHOW THAT THE PROPOSED ALGORITHM HAS A VERY GOOD PERFORMANCE.

Yearly Impact:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 132

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 58
Issue Info: 
  • Year: 

    2023
  • Volume: 

    12
  • Issue: 

    3
  • Pages: 

    1-16
Measures: 
  • Citations: 

    0
  • Views: 

    35
  • Downloads: 

    0
Abstract: 

Social networks are one of the types of complex networks. Identifying communities in social networks is an effective way to use their information, for which several algorithms have been presented so far. In this paper, novel algorithms are designed, in which a Learning automaton is attached to each node; The number of actions of Learning automata is fixed and equal to the estimate of the number of network communities. At each step, each of the Learning automata chooses an action from its set of actions. Choosing any of these actions means assigning the label of that community to the node. The action chosen by each automaton is evaluated based on the chosen actions of its neighbors ((local attention) and/or communities detected by the entire method (global screening). The result of the evaluation leads to generate rewards or punish signal for the automata. By receiving a reward, the probability of re-choosing the chosen action by the automaton, or the community label, increases, and otherwise, by receiving a fine, the probability of this action decreases. By repeating the algorithm, the optimal action is determined as long as no change occurs in the selected label of the corresponding automata of each node with more iterations, and as a result, the optimal communities are determined as the output of the algorithm. The comparison of the results of the experiments shows the effectiveness of the proposed methods in comparison with the previous methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 35

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button